- injective monomorphism
- мат.инъективный мономорфизм
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Injective function — Injective redirects here. For injective modules, see Injective module. An injective function (is not a bijection) … Wikipedia
Monomorphism — This page is about the mathematical term. For other uses, see Monomorphic (disambiguation) or Polymorphism (disambiguation). In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from … Wikipedia
Injective module — In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z module Q of all rational numbers. Specifically, if Q is a submodule of some… … Wikipedia
Injective object — In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in homotopy theory and in theory of model categories. The dual notion is … Wikipedia
monomorphism — noun a) an injective homomorphism b) the absence of sexual dimorphism … Wiktionary
Epimorphism — In category theory an epimorphism (also called an epic morphism or an epi) is a morphism f : X rarr; Y which is right cancellative in the following sense: : g 1 o f = g 2 o f implies g 1 = g 2 for all morphisms g 1, g 2 : Y rarr; Z .Epimorphisms… … Wikipedia
Five lemma — In mathematics, especially homological algebra and other applications of Abelian category theory, the five lemma is an important and widely used lemma about commutative diagrams.The five lemma is valid not only for abelian categories but also… … Wikipedia
Morphism — In mathematics, a morphism is an abstraction derived from structure preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear… … Wikipedia
Ring homomorphism — In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the operations of addition and multiplication. More precisely, if R and S are rings, then a ring homomorphism is a function f : R → S such that … Wikipedia
Embedding — In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.When some object X is said to be embedded in another object Y , the embedding is… … Wikipedia
Category of rings — In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (preserving the identity). Like many categories in mathematics, the category of rings is… … Wikipedia